
Parallel dynamics and computational complexity of network growth models

Benjamin Machta1,2 and Jonathan Machta1

1Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003-3720, USA
2Department of Physics, Brown University, Box 1843, Providence, Rhode Island 02912, USA

sReceived 22 August 2004; revised manuscript received 27 December 2004; published 28 February 2005d

The parallel computational complexity or depth of growing network models is investigated. The networks
considered are generated by preferential attachment rules where the probability of attaching a new node to an
existing node is given by a powera of the connectivity of the existing node. Algorithms for generating
growing networks very quickly in parallel are described and studied. The sublinear and superlinear cases
require distinct algorithms. As a result, there is a discontinuous transition in the parallel complexity of sam-
pling these networks corresponding to the discontinuous structural transition ata=1, where the networks
become scale-free. Fora.1, networks can be generated in constant time while for 0øa,1, logarithmic
parallel time is required. The results show that these networks have little depth and embody very little history
dependence despite being defined by sequential growth rules.

DOI: 10.1103/PhysRevE.71.026704 PACS numberssd: 02.50.Ey, 05.50.1q

I. INTRODUCTION

This paper is concerned with the complexity of networks.
Many features of biological, social, and technological sys-
tems can be described in terms of networks. Examples in-
clude gene networks, friendship networks, citation networks,
the power grid, the Internet, and the world wide webf1g.
Although the systems that generate these networks are ex-
tremely complex, the networks themselves may or may not
evidence this complexity. In many cases, the networks gen-
erated by complex systems are approximately scale-free.
Barabasi and Albertf2g sBAd showed that scale-free net-
works can be generated by rules for network growth that
embody the intuitively plausible idea of preferential attach-
mentf18g. In their model, the network grows by the addition
of one node at a time and each node creates one new con-
nection to an existing node. Existing nodes in the network
that already have many connections are more likely to gain
the new connection from the new node added to the network.
The growing network model seems to incorporate a history-
dependent process, albeit simplified, into the generation of
the network.

One of the essential markers of complexity is a long his-
tory. Complex systems cannot arise instantaneously but re-
quire a long sequence of interactions to develop. Neither
“complexity” nor “long history” are well-defined concepts
but an appropriate proxy for these ideas can be formulated
within computational complexity theory. Computational
complexity theory is concerned with the resources required
to solve problems. Although there are various resources re-
quired to solve computational problems, here we focus on
parallel time or depth. Depth is the number of computational
steps needed by a parallel computer to solve a problem. In
our case, the problem is to generate a statistically correct
representation of the network. If the depth of the computa-
tion needed to generate the network is large, even using the
most efficient algorithm, we say that the network has a long
history and cannot be generated quickly. If, on the other
hand, only a few parallel steps are needed to generate the
network, then it cannot be complex.

The BA growing network model would appear to have
substantial depth since nodes are added to the network one at
a time and the preferential attachment rule uses knowledge
of the existing state of the network to decide where each new
node will attach. If the BA model captures the mechanism
for the scale-free behavior found in real world networks, then
perhaps one can conclude that some of the complexity or
history dependence of the social, biological, or technological
system that generated the network is embodied in the net-
work. One of the main conclusions of this paper is that grow-
ing network models do not actually embody much history
dependence. What we show is that there is a fast parallel
algorithm that generates BA growing networks withN nodes
in Oslog logNd steps.

The BA model has a linear preferential attachment rule.
Krapivsky, Redner, and Leyvrazf3g introduced a generaliza-
tion of the BA model in which the probability to connect to
a node is proportional to a powera of its number of connec-
tions. The original BA model is the casea=1 while a=0 is
a random network. The class of models 0øa,` is analyzed
in Refs.f3,4g and it is seen thata=1 marks a “phase transi-
tion” between a “high-temperature phase” fora,1 where
no node has an extensive number of connections and a “low-
temperature phase” fora.1 where a single node has almost
all connections in the largeN limit.

We show that distinct but related parallel algorithms are
needed to efficiently simulate thea,1 anda.1 regimes so
that there is a discontinuous transition in the computational
complexity of simulating the model ata=1. For 0,a,1,
the parallel time for generating a network of sizeN scales
logarithmically in N while for 1,a,` there is a constant
time algorithm. Exactly ata=1 still a third algorithm is most
efficient with parallel running time that isOslog logNd.

Although the primary purpose for constructing the algo-
rithms presented here is to elucidate the complexity and his-
tory dependence of network models, the strategies embodied
in the algorithms may have practical applications in compu-
tational studies of stochastic processes. For example, the re-
direction method that is used to show logarithmic complexity

PHYSICAL REVIEW E 71, 026704s2005d

1539-3755/2005/71s2d/026704s9d/$23.00 ©2005 The American Physical Society026704-1

in thea=1 case is closely related to the best known sequen-
tial method for simulating this modelf4g.

A number of nonequilibrium models in statistical physics
defined by sequential rules have been shown to have fast
parallel dynamics. Examples include the Eden model, inva-
sion percolation, the restricted solid-on-solid modelf5g, the
Bak-Sneppen modelf6g, and internal diffusion-limited ag-
gregationf7g, all of which can be simulated in parallel in
polylogarithmic time. On the other hand, no polylog time
algorithm is known for generating diffusion-limited aggrega-
tion clusters and there is evidence that only power-law
speedups are possible using parallelismf8,9g.

Phase transitions in computational complexity have been
the object of considerable recent study; for example, see Ref.
f10g. Most of the attention has been focused onNP-hard
combinatorial optimization problems. Growing networks and
many other physically motivated models are naturally related
to problems in the lower classP sproblems solvable in poly-
nomial timed. One of the purposes of this paper is to provide
an example of a transition in computational complexity at
this lower level of the complexity hierarchy.

The paper is organized as follows. In the next section, we
define and describe the class of preferential attachment net-
work growth models to be studied. In Sec. III, we give a
brief review of relevant features of parallel computational
complexity theory. Section IV presents efficient parallel al-
gorithms for sampling growing network models and related
systems, Sec. V analyzes the efficiency of these algorithms,
and Sec. VI presents results from numerical studies of the
efficiency of one of the algorithms. The paper ends with a
discussion.

II. GROWING NETWORK MODELS

In this section, we describe growing network models with
preferential attachment first considered by Barabasi and Al-
bert f2g and later generalized by Krapivsky, Redner, and
Leyvrazf3,4g. Consider a graph withN ordered nodes, each
having one outgoing link, constructed by the addition of one
node every time step so that at timet in the construction,
node t is attached to a previous node, 0 throught−1. The
probabilitypnstd of attaching nodet to noden, t is given by

pnstd =
F„knstd…

Zstd
, s1d

whereknstd is the degreesnumber of connectionsd of n, at
time t, F is some function, andZ is the normalization given
by

Zstd = o
j=0

t−1

F„kjstd…. s2d

We require thatFskd is a nondecreasing function ofk. Notice
that, in general,pnstd is a function not only ofknstd but also
of kjstd for all j , t because of the normalization,Z. The
attachment probabilities depend on all the node degrees un-
lessZstd is a function oft alone. This simpler form holds if
and only if F is a linear function,Fskd=a+bk. In the latter
case,Zstd=sa+2bdt sinceo j=0

t−1kjstd=2t.

The linear homogeneous case,Fskd=k, corresponds to the
original Barabasi-Albert modelf2g and leads to a scale-free
network where the degree distribution,Pskd, has a power-law
tail, Pskd,k−3. More generally, ifFskd is asymptotically lin-
ear, Pskd,kn, where n is tunable to any value 2øn,`
f3,4,11g. The asymptotically linear attachment kernel is a
marginal case and marks a “phase transition” between re-
gimes with qualitatively different behavior. Consider the ho-
mogeneous models,Fskd=ka, studied in detail in Ref.f4g. In
the sublinear case, 0,a,1, the degree distribution has a
stretched exponential form and the node with the maximum
degree has polylogarithmically many connections. The lim-
iting case ofa=0 is a random network where each connec-
tion is randomly and independently chosen. There is an anal-
ogy betweena and temperature in a thermodynamic system
with the range 0øa,1 like a high-temperature phase. The
order parameter is the maximum degree in the system di-
vided by N and the order parameter vanishes for 0øaø1.
In the superlinear or low-temperature phase,a.1, there is a
single “gel” node that has almost all connections and the
order parameter is unity. The phase transition then has a dis-
continuous character despite the fact that thea=1 state is
scale-free. Another indication that the transition is discon-
tinuous is seen by looking at the entropy. Using the
Kolmogorov-Chaitin definition of entropy as the minimum
number of bits required to describe a system statef12g, it is
clearly seen that the entropy per node is positive for alla
ø1 but that fora.1 the entropy per node vanishes since
almost all nodes connect to the gel node and it is only nec-
essary to specify the connections for those nodes that do not
connect to the gel node. Thus, the entropy per node is also
discontinuous ata=1.

III. PARALLEL COMPUTATION AND DEPTH

Computational complexity theory is concerned with the
scaling of computational resources needed to solve problems
as a function of the size of the problem. An introduction to
the field can be found in Ref.f13g. Here we focus on parallel
computation and choose the standardparallel random access
machinesPRAMd as the model of computationf14g. The
main resources of interest areparallel time or depth and
number of processors. A PRAM consists of a number of
simple processorssrandom access machines, or RAMsd all
connected to a global memory. Although a RAM is typically
defined with much less computational power than a real mi-
croprocessor such as Pentium, it would not change the scal-
ing found here to think of a PRAM as being composed of
many microprocessors all connected to the same random ac-
cess memory. The processors run synchronously and each
processor runs the same program. Processors have an integer
label so that different processors follow different computa-
tional paths. The PRAM is the most powerful model of clas-
sical, digital computation. The number of processors and
memory is allowed to increasepolynomiallysi.e., as an arbi-
trary powerd in the size of the problem to be solved. Com-
munication is nonlocal in that it is assumed that any proces-
sor can communicate with any memory cell in a single time
step. Obviously, this assumption runs up against speed of

B. MACHTA AND J. MACHTA PHYSICAL REVIEW E 71, 026704s2005d

026704-2

light or hardware density limitations. Nonetheless, parallel
time on a PRAM quantifies a fundamental aspect of compu-
tation. Any problem that can be solved by a PRAM withH
processors in parallel timeT could also be solved by a single
processor machine in a timeW such thatWøHT since the
single processor could sequentially run through the tasks that
were originally assigned to theH processors. The single pro-
cessor timeW is sometimes referred to as the computational
work. On the other hand, it is not obvious whether the work
of a single processor can be reorganized so that it can be
accomplished in a substantially smaller number of steps by
many processors working independently during each step.

An example of where exponential speed-up can be
achieved through parallelism is addingN numbers. Addition
can be done by a single processor in a time that scales lin-
early inN. On a PRAM withN/2 processors, addition can be
carried out inOslog Nd parallel time using a binary tree. For
simplicity, supposeN is a power of 2. In the first step, pro-
cessor one adds the first and second numbers and puts the
result in memory, processor two adds the third and fourth
numbers and puts the result in memory, and so on. After the
first step is concluded, there areN/2 numbers to add and
these are again summed in a pairwise fashion byN/4 pro-
cessors. The summation is completed afterOslog Nd steps.
Addition is said to haveefficientparallel algorithms in the
sense that they can be solved in time that is a power of the
logarithm of the problem size, hereN, that is,polylog time.
On the other hand, it is believed that there are some prob-
lems that can be solved in polynomial time using a single
processor but cannot be efficiently parallelized. It is believed
that P-complete problemsf14,15g have this property and can-
not be solved in polylog time with polynomially many pro-
cessors.

The main concern of this paper is the complexity of gen-
erating networks defined by preferential attachment growth
rules. Since these networks grow via a stochastic process, we
envision a PRAM model equipped with registers containing
random numbers. The essential question that we seek to an-
swer is the depthsnumber of PRAM stepsd required to con-
vert a set of independent random bits into a statistically cor-
rect network.

IV. PARALLEL ALGORITHMS FOR GROWING
NETWORK MODELS

At first glance, it seems that growing networks have a
strong history dependence. It would appear that to connect
some nodet appropriately one must first connect all nodes
prior to t in order to compute the connection probabilities for
t according to Eq.s1d. Surprisingly, one can construct a sta-
tistically correct network using an iterative parallel process
that converges in far fewer thant steps. The strategy is to
place progressively tighter lower bounds on the connection
probabilities based on connections made in previous parallel
steps in the process.

A. A coin toss with memory

A simple example of the general strategy is instructive.
Consider a biased coin toss with memory such that the num-

ber of heads on the firstt coin tosses modifies the probability
of a head on tosst+1. Suppose that more heads on previous
tosses increases the probability of a head on the current toss
according to some functionfsxd, wherepstd= f(xstd) is the
probability of a head on thetth coin toss andxstd is the
fraction of heads on all the coins tossed beforet. Suppose
that f is a nondecreasing function of its argument and that
fs0d.0. Note that the special casefsxd=x is a Polya urn
problem and is discussed in Sec. IV D.

The goal is to simulate a sequence ofN coin tosses. It
would appear that we cannot decide coint until we have
decided all its predecessors. Nonetheless, we can proceed in
parallel by successively improving lower bounds on the
probability that a given coin toss is a head. Let,pSstd,

pSstd = f„xSstd…, s3d

be an estimated lower bound on the probability that thetth
coin toss is a head on theSth step of the algorithm where
xSstd is the fraction of tosses determined to be heads at the
beginning of iterationS. The starting assumption is that none
of the tosses have been determined,x1std=0 for all t, and this
assumption is used to compute how many coins become
heads on the first iteration. Thus,p1std= fs0d and, on the first
iteration, coint becomes a head with this probability. Once a
coin becomes a head, it stays a head while coins that are not
heads remain undecided. On the second iteration, we make
use of the heads decided in the first iteration to recompute
the fraction determined to be heads,x2std, and from these
obtain the new boundsp2std= f(x2std)ùp1std. For each coint
that is not yet determined to be a head, we declare it a head
with conditional probabilityr2std that it will become a head
on this step given that it is not yet a head,r2std=fp2std
−p1stdg / f1−p1stdg. Some new coins are declared heads and
these are then used to computex3std. In general, if coint is
not yet determined by stepS, it becomes a head with prob-
ability

rSstd =
pSstd − pS−1std

1 − pS−1std
, s4d

whererSstd is the conditional probability of coint becoming
a head on stepS given it was undecided up to stepS. The
expression for the conditional probability follows from the
observation that the denominator is the marginal probability
of being undecided after stepS−1 and the numerator is the
probability of becoming a head on stepS. The algorithm
stops on stepT when there is no change from one step to the
next, xTstd=xT−1std for all t, and the lower bounds equal the
true probabilitiespTstd=pstd. At the end of the simulation,
every coin that is not a head is declared to be a tail. For every
t,

x1std ø x2std ø ¯ ø xTstd = xstd, s5d

so that

p1std ø p2std ø ¯ ø pTstd = pstd. s6d

Thus the procedure is well-defined and we can decide in
stages whether coint will be a head.

PARALLEL DYNAMICS AND COMPUTATIONAL … PHYSICAL REVIEW E 71, 026704s2005d

026704-3

In the following two sections, we show how to generalize
this strategy to the case of preferential attachment growing
network models.

B. Parallel algorithm for linear and sublinear kernels

This section describes a parallel algorithm for construct-
ing a network with a sublinear or linear attachment, rule,
Fskd=ka, where 0øaø1 or, more generally, the case where
the attachment weightFskd is a nondecreasing, convex func-
tion of k. As in the coin toss example, on intermediate par-
allel steps we have nodes whose connections are not yet
determined. In this algorithm, we lump all of these connec-
tions into a “ghost” node whose in-degree is equal to the
number of nodes that have not yet been determined. On ev-
ery parallel time step,S, the algorithm attempts to connect
every node that is currently connected to the ghost node to a
real node according to lower bounds on the connection prob-
abilities determined by connections that have been made in
previous steps.

In the initialization,S=0 step of the algorithm, a ghost
node is created and all real nodes are connected to it, except
node zero, which connects to itself, and node one, which also
connects to node zero. Thus, forS=0 and every sequential
time t.1, every real noden, t has in-degree 0 and out-
degree 1, except the zero node, which has both in- and out-
degree equal to 1. The ghost node has in-degreet−1 for t
.0. Letkg

Sstd be the number of nodes connecting to the ghost
node at the beginning of parallel stepS and sequential timet
so that kg

1std= t−1 for t.0. In the first, S=1 step of the
algorithm, the connection probability lower bound for nodet
to connect to noden, pn

1std, is given by

pn
1std =HFs2d/Z̃1std, n = 0,

Fs1d/Z̃1std, n . 0,
J s7d

while the connection probability,Q1std, for the ghost node is
taken to be proportional to its number of connections,

Q1std = cst − 1d/Z̃1std s8d

with the normalization given by

Z̃1std = cst − 1d + Fs2d + st − 1dFs1d. s9d

The constantc is discussed below. These are the connection
probabilities that would arise if each real node has one con-
nection and the ghost node has an attachment probability
proportional to its degree. On the first step of the algorithm,
each nodet is connected to one of its predecessors or the
ghost node according to the probabilities given above.

As in the case of the coin toss model described in the
previous section, on successive steps we recompute the
bounds on the connection probabilitiespn

Sstd for the real
nodes and the ghost nodeQSstd. For generalS, t, andn, these
probabilities are given by

pn
Sstd = F„kn

Sstd…/Z̃Sstd, s10d

QSstd = ckg
Sstd/Z̃Sstd, s11d

with the normalization given by

Z̃Sstd = ckg
Sstd + o

m=0

t−1

F„km
Sstd…. s12d

On stepS of the algorithm, the conditional probability
rn

Sstd of connecting nodet to noden, given that nodet has
not yet connected to a real node on an earlier step, is given
by the difference between the probability bounds on succes-
sive steps divided by the marginal probability of being un-
determinedsconnected to the ghost noded before stepS,

rn
Sstd =

pn
Sstd − pn

S−1std
QS−1std

. s13d

Note that the denominator can be written as

QS−1std = 1 − o
m=0

t−1

pm
S−1std. s14d

On stepS of the algorithm, each nodet that was still con-
nected to the ghost node after stepS−1 is connected with
probability rn

Sstd to real noden, t or, with probabilityrg
Sstd,

rg
Sstd = QSstd/QS−1std s15d

still connected to the ghost node. The algorithm is finished
afterT steps when there are no more nodes connected to the
ghost node and the bounds of Eq.s10d saturate to the correct
probabilities of Eq.s1d. Note that at least one node must
connect in each parallel step since the lowest numbered node
that is still unconnected will have no weight allotted to it in
the ghost node.

For the conditional probabilitiesrn
Sstd to be positive, the

probability bounds must be nondecreasing for alln and t,

pn
1std ø pn

2std ø ¯ ø pn
Tstd = pnstd. s16d

These inequalities imply a bound onc as follows. SinceFskd
is a nondecreasing function ofk andkn

Sstd is a nondecreasing

function of S, it is sufficient to require thatZ̃std be a nonin-

creasing function,Z̃Sstdø Z̃S−1std, or, since

kg
Sstd = 2t − 1 − o

m=0

t−1

km
Sstd, s17d

we require that

o
m=0

t−1

fF„km
Sstd… − ckm

Sstdg ø o
m=0

t−1

fF„km
S−1std… − ckm

S−1stdg.

s18d

This inequality is satisfied term by term ifFskd−ck is non-
increasing, which holds if

c ù max
k

hFsk + 1d − Fskdj. s19d

Since the algorithm will finish fastest if the ghost node has
the smallest possible weight, we setc equal to its lower

B. MACHTA AND J. MACHTA PHYSICAL REVIEW E 71, 026704s2005d

026704-4

bound. In particular, for the power-law case,Fskd=ka with
aø1, the maximum occurs fork=1 yielding

c = 2a − 1. s20d

C. The parallel algorithm for superlinear kernels

For the superlinear case, a gel node develops to which
almost all nodes connect asN→`. When a.2, all but a
finite number of nodes connect to the gel node. The parallel
algorithm described here takes advantage of the fact that the
vast majority of connections are to the gel node and the gel
node plays a role similar to that of the ghost node in the
sublinear and linear cases. The basic structure of the algo-
rithm is as follows. In the initializationS=0 phase, the se-
quential algorithm is run so that all nodestø t0 are properly
connected.t0 is chosen so that a single gel node is firmly
established by the time all nodestø t0 are connected. The gel
node is firmly established if the probability that a different
node ultimately becomes the gel node is less than some small
valuee. Whena is large,t0 is small, but asa approaches 1,
for fixed e , t0 diverges. After the initialization phase, it is
tentatively assumed that all nodest0, t,N are connected to
the gel node. The gel node serves as a repository for all
connections that are not yet determined. In successive steps,
the connection probabilities of all nodest0, t,N are modi-
fied according to the number of connections that possible
destination nodes,n, t, received in the previous step and
lower bounds on connection probabilities are recalculated.
The difference between old and new probability bounds is
used to find conditional probabilities for moving a connec-
tion from the gel node to some other node. This process is
repeated until no connections are moved from the gel node to
any other node. The nodes that have not been moved away
from the gel node are then determined to be connected to the
gel node.

Following the general strategy, lower bounds on the con-
nection probabilities fort. t0 are determined for each paral-
lel step,

pn
Sstd =

F„kn
Sstd…

ZSstd
, s21d

where the normalization is given by

ZSstd = o
n=0

t−1

F„kn
Sstd…. s22d

Note that the connection probabilities are calculated in the
same way for the gel node and the other nodes in contrast to
the sublinear case.

In the first parallel step,S=1, the algorithm connects ev-
ery node,t. t0, to some noden according to the connection
probabilitiespn

1std. In successive steps,S.0, it attempts to
reconnect only those nodest. t0 that are still connected to
the gel node. The conditional probabilityrn

Sstd for connecting
t. t0 to nÞg on stepS is given by

rn
Sstd =

pn
Sstd − pn

S−1std
pg

S−1std
. s23d

The numerator is the probability thatt connects ton on step
S and the denominator is the probability thatt is undeter-
mined after stepS−1. The conditional probability thatt is
undetermined after stepS, given that it was undetermined
after stepS−1, is

rg
Sstd =

pg
Sstd

pg
S−1std

. s24d

The algorithm is finished after stepT if no changes occur
from stepT−1 to stepT. On stepT, nodes that are connected
to g are considered to be determined and actually connected
to the gel node.

The algorithm is valid if Eq.s16d holds for all t. t0 and
nÞg. SinceFskd is nondecreasing, we require thatZSstd is a
nonincreasing function ofS. From Eq.s22d we must show
that the change inZ from one parallel step to the next is
either constant or decreasing for allt andS. We can write the
requirement for the validity of the algorithm as

ZS− ZS−1 = o
m=0

t−1

fFskm
Sd − Fskm

S−1dg ø 0. s25d

It is useful to take the gel node term out of the sum, as its
behavior is different,

ZS− ZS−1 = Fskg
Sd − Fskg

S−1d + o
m=0,mÞg

t−1

fFskm
Sd − Fskm

S−1dg.

s26d

At each parallel step, connections are switched from the gel
node to other nodes. For every connection that is lost by the
gel node, exactly one connection is gained by another node.
We also note that becauseF is a concave function with a
continuously increasing derivative, we can say that for any
positivedk,

F8sk + dkddk ù Fsk + dkd − Fskd ù F8skddk. s27d

Sincekg
S is decreasing withS andkmÞg

S is increasing withS,
we can rewrite Eq.s26d, absorbing the contribution of the gel
node into the sum to describe the entire rewiring ofkm

S

−km
S−1 connections from the gel node to another node. We use

Eq. s27d to put an upper bound on the change in size, the
right-hand sidesRHSd of Eq. s26d,

ZS− ZS−1 ø o
m=0,mÞg

t−1

fkm
S − km

S−1gfF8skm
Sd − F8skg

Sdg. s28d

The term on the RHS in the first square brackets is non-
negative. If kg

S.km
S, then the term in the second square

brackets is always negative becauseF8 is a strictly increasing
function of k. This argument shows that Eq.s25d holds and
thus the algorithm is valid if the gel node remains the largest
node until the end of the simulation. The value ofe and, thus,
the choice oft0 determines the error rate of the algorithm
since the algorithm fails if and only if the gel node loses its
status as having the most connections.

PARALLEL DYNAMICS AND COMPUTATIONAL … PHYSICAL REVIEW E 71, 026704s2005d

026704-5

D. Redirection method for linear kernels and urns

This section explores the method proposed by Krapivsky
and Rednerf4g for the case of a linear attachment kernel. We
show that this method can be used to generate the network in
Oslog logNd steps. The method works as follows: At se-
quential timet, nodet is connected to any noden, t with
equal probability. With probabilityr, however, this node is
redirected to the “ancestor” ofn, the node thatn connects to.
As Krapivsky and Redner show, whenr =0.5, this procedure
exactly reproduces the BA modelfFskd=kg. For other values
of r , Fskd is asymptotically linear and the connectivity dis-
tribution scales asPk,k−n, wheren=1+1/r. It is easy to see
why redirection is equivalent to a linear kernel. A node that
already hask connections hask ways to be connected from a
new node since each of thek connections can serve as a
redirection point for the new node. Forr =s1−rd=1/2, it is
clear thatFskd=kFs1d, so this case corresponds to the homo-
geneous BA network.

This redirection process can be simulated inOslog logNd
parallel time as follows. First, randomly connect every node
to one of its predecessors. Once this is done, for every con-
nection, with probabilityr, make that connection a redirect-
able sRd connection, otherwise make it a terminalsTd con-
nection. All that remains is to trace every path of R
connections until a T connection is reached. This can be
accomplished using a standard parallel connectivity algo-
rithm or by the following simple approach. For every nodet,
if its outgoing connection is type T, make no change to the
connection. If its outgoing connection is type R, then it is
redirected. Supposet connects toi by an R connection and
that i connects toj , then after the parallel step,t connects to
j . Furthermore, if thei to j connection is type T, then the new
connection fromt to j is type T, otherwise it is an R connec-
tion. When all of the connections are type T, the program is
done and the network is correctly wired. It is clear that this
procedure requires a number of steps that scale as the loga-
rithm of the longest chain of redirections. On average, the
longest chain of redirections will behave as the logarithm of
the system size. Each connection redirects with probabilityr.
The average length of the longest chain of redirections,M, is
estimated byNrM <1, whereN is the number of possible
starting points andrM is the probability of a chain of length
M. Thus logN+M log r <0 so M ,−log N/ log r. Note that
the chain length saturates atOslog Nd rather than diverges as
r →1. Even ifr →1, each connection will typically halve the
distance to the origin so that there areOslog Nd connections
in the longest chain. A chain of connections of lengthM can
be traced in logM steps, because each step will halve the
length of the chain. Thus the algorithm will finish in
Oslog Md=Oslog logNd steps.

The Polya urn model is closely related to the BA growing
network model and the redirection method can be applied to
efficiently sample its histories in parallel. In the simplest
version of the model, an urn initially contains two balls, one
red and one black. On each time step a ball is randomly
selected from the urn and then replaced along with a new
ball of the same color. Thus, afterN steps the urn contains
N+2 balls. The urn model has the unusual property that it

can have any limit law. For largeN, the fraction of red balls
approaches a constant but, with equal probability, that con-
stant can be any value from zero to one. The limit law is thus
determined by the initial choices.

The urn model can be viewed as a network where each
ball is a node and the connection from one node to a prede-
cessor represents the fact that the color of the later node was
determined by the earlier node. To find the color of a given
ball or node, the connections are traced back to one of the
two initial balls. This representation shows that the urn
model is identical to the linear network model in the limit
that the redirection probability is unity. The typical longest
path of connections back to the origin isOslog Nd since each
connection will typically halve the distance to the origin.
Thus the depth of sampling the history of an urn model is
Oslog logNd.

V. EFFICIENCY OF PARALLEL ALGORITHMS

A. Efficiency of the parallel algorithm when 0ÏaÏ1

In this section we argue that for a system of sizeN, when
0øaø1, the parallel algorithm will finish inOslog Nd par-
allel steps and we estimate the prefactor of the logarithm.
The starting point is an equation for the expected number of
connections to the ghost node on theS+1 step given the
number of connections on stepsS andS−1,

E„kg
S+1std… = o

t8=1

t−1

fkg
Sst8d − kg

Sst8 − 1dgrg
Sst8d. s29d

The quantity in the square brackets is 1 ift8 is connected to
the ghost node on stepS and 0 otherwise, whilerg

Sst8d, de-
fined in Eq. s15d, is the conditional probability thatt8 is
connected to the ghost node after stepS if it is connected to
the ghost node before stepS. Equations29d holds forS.2.
Initially, kg

1std= t−1. Specializing to the case that the attach-
ment kernel is a pure power law with exponenta and ignor-
ing constants that are irrelevant in the large-t limit, we have

E„kg
2std… = c/sc + 1d = 1 − 2−a. s30d

This result follows from the fact that the probability that
nodet will still be connected to the ghost node after the first
step is, according to Eqs.s8d and s9d, approximatelyc/ sc
+1d. The far RHS of the expression is obtained from Eq.
s20d.

To proceed further, we make two approximations. First,
we ignore fluctuations and replacekg by its average value on
the RHS of Eq.s29d,

kg
S+1std = o

t8=1

t−1

fkg
Sst8d − kg

Sst8 − 1dg
kg

Sst8d
kg

S−1st8d
Z̃S−1st8d

Z̃Sst8d
, s31d

where the notation is simplified in this equation by interpret-
ing kg as the average number of connections to the ghost
node and where Eqs.s11d ands15d have been used to expand
rg.

For the case of a linear attachment kernel,c=1, and the

normalizationZ̃S is independent ofS. The ratio of normal-

B. MACHTA AND J. MACHTA PHYSICAL REVIEW E 71, 026704s2005d

026704-6

izations thus drops out of the equation, and we obtain

kg
S+1std = o

t8=1

t−1

fkg
Sst8d − kg

Sst8 − 1dg
kg

Sst8d
kg

S−1st8d
. s32d

For sublinear kernels, the choice ofc insures that the ratio

Z̃S−1st8d / Z̃Sst8d is less than 1 as discussed at the end of Sec.
IV B. Our second approximation is to assume that this ratio
is unity for the entire sublinear regime. Note that bothkg

1std
andkg

2std are proportional tot. It follows from Eq. s32d that
kg

Sstd is proportional tot for all S and we writekg
Sstd=ksSdt.

This substitution reduces Eq.s32d to

ksS+ 1d =
ksSd2

ksS− 1d
. s33d

Given our approximations, the ratioksSd /ksS−1d=1−2−a

for all Sand the solution isksSd=s1−2−adS. The estimate for
the number of steps,T, needed to complete the algorithm is
such that the ghost node is expected to have fewer than one
node,ksTdN=1. This requirements leads to the result

T =
logsNd

− logs1 − 2−ad
. s34d

This result is compared to the numerical simulations in Sec.
VI.

B. Efficiency of the parallel algorithm when a.1

In this section, we show that thea.1 algorithm finishes
in constant time independent ofN although this constant di-
verges asa→1. The key factf4g about superlinear networks
is that there is a cutoff

kmax= a/sa − 1d s35d

such that only a finite number of nodes have more thankmax
connections. By choosingt0 sufficiently large, no nodest
. t0 will have more thankmax connections. We will show that
the running time of the parallel part of the algorithm is
roughly kmax steps.

Consider what happens on the first step of the algorithm.
All nodest. t0 are initially connected to the gel node so the
leading behavior of the normalization isZ1std, ta and the
leading behavior of the connection probabilities, defined in
Eq. s21d, is

pn
1std , t−a s36d

for nÞg. Summing over allnÞg, we find that on the first
step, the probability that nodet will connect away from the
gel node behaves ast1−a. The expected change in the number
of nodes connecting to the gel node during step one is ob-
tained by summing over all nodest0, t,N, with the result

dkg
2sNd ; kg

1sNd − kg
2sNd , N2−a. s37d

If a.2, no changes are expected to occur in the first step of
the algorithm and we are done. This result is consistent with
the fact that fora.2, there are only a finite number of nodes
with more than one connection and these are all determined
beforet0.

For 1,a,2, additional steps are needed beforedkg
SsNd is

less than 1 and the algorithm is done. We make the ansatz
that

dkg
Sstd , tgsSd s38d

and look for a self-consistent solution forgsSd. The running
time T is obtained by solving for the leastT such thatgsTd
,0.

On the second and later steps of the algorithm, the condi-
tional connection probabilities, defined in Eqs.s21d–s23d,
can be written to leading order and fornÞg as

rn
Sstd =

fZS−1std/ZSstdgkn
Sstda − kn

S−1stda

kg
S−1stda

. s39d

There are two ways forrn
Sstd to be nonzero. The first is for

there to have been a new connection fromt8 to n, with n
, t8, t, in stepS−1. The expected number of nodes,n, that
received new connections in stepS−1 is just dkg

Sstd. Since
kg

Sstd, t for all S, the leading behavior ofrn
Sstd is t−a and the

overall probability thatt will connect away from the gel node
by this mechanism scales asdkg

Sstdt−a, tgsSd−a.
The second way forrn

Sstd to be nonzero is for the ratio
ZS−1std /ZSstd to exceed unity. This possibility applies for all
target nodes,n, t , nÞg. The leading behavior of this ratio
is given by

ZS−1std/ZSstd ,
fkg

Sstd + dkg
Sstdga

kg
Sstda

, 1 + a
dkg

Sstd
kg

Sstd
s40d

so that the leading behavior ofrn
Sstd is dkg

Sstdt−s1+ad. Since
there aret target nodes, the total probability thatt will con-
nect away from the gel node by this mechanism again scales
as tgsSd−a.

Combining both of the above mechanisms fort to connect
away from the gel node and summing over allt , t0, t,N
sand still connected to the gel noded, we obtain an expression
for dkg

S+1sNd, the expected number of nodes directed away
from the gel node on stepS,

dkg
S+1sNd , NgsSd+1−a. s41d

Using the ansatz of Eq.s38d, we obtain the recursion rela-
tion,

gsS+ 1d = gsSd + 1 −a. s42d

The recursion relation and the initial conditiongs2d=2−a,
Eq. s37d, has the solution

gsSd = a − sa − 1dS. s43d

The running time of the algorithm is obtained from the least
T for which gsTd is negative,

T = a/sa − 1d, s44d

or, from, Eq.s35d,

T = kmax. s45d

This result can be understood in terms of the following se-
quence of events for creating connections for nodes beyond

PARALLEL DYNAMICS AND COMPUTATIONAL … PHYSICAL REVIEW E 71, 026704s2005d

026704-7

t0. In the first parallel step, almost all nodes with two con-
nections are generated. In the second parallel step, a small
fraction of these nodes develop a third connection and a
comparable number of nodes with one connection get a sec-
ond connection. On the third step, an even smaller number of
nodes with three connections get a fourth connection and so
on until nothing happens. Note that the analysis of the algo-
rithm reproduces the results inf4g for the scaling of the num-
ber of nodes with 2, 3,…, kmax connections.

VI. SIMULATION RESULTS FOR LINEAR AND
SUBLINEAR KERNELS

In Sec. V A, we argued that the algorithm for the sublin-
ear kernel requires logarithmic parallel time to generate a
network, and in Eq.s34d we estimate the coefficient of the
logarithm. In this section, we support these conclusions with
a simulation of the parallel algorithm on a single processor
workstation. In the simulation, the work of each processor on
the PRAM is done in sequence making sure not to update the
database describing the network until a parallel step is com-
pleted. We generated 1000 networks for each value ofa and
for each system size. Values ofa ranged from 0 to 1, in
increments of 0.05 and system sizes from 50 nodes to 12 800
nodes with each size separated by a factor of 2. Figure 1
shows the average number of parallel steps versus system
size fora=0.25, 0.5, 0.75, and 1.0. The figure demonstrates
the logarithmic dependence of average running timeT on
system sizeN for all values ofa and the full range of system
sizes so that that, to a good approximation,T=Asadlog N.
Figure 2 shows a plot of the coefficientA as a function ofa.
The results are plotted for 0øaø1. The prediction of Eq.
s34d is shown in the same figure. Although not perfect, the
approximation of Eq.s34d captures the general trend of the
data and is within a few percent of the numerical results for
a,0.8. The larger fluctuations in connectivity neara=1
may explain why the “mean-field” assumption underlying
the theoretical curve loses accuracy there. The theoretical
estimate does appear to correctly predict thatAsad ap-
proaches zero with infinite slope asa→0.

VII. DISCUSSION

We have examined the parallel computational complexity
of generating networks obeying preferential attachment

growth rules. We demonstrated that these networks can be
sampled in parallel time that is much less than the size of the
network. This result is surprising because the defining rules
for generating these networks are sequential with nodes
added to the network one at a time depending on the present
state of the network. Nonetheless, we have bounded the
depth of sampling growing networks by exhibiting efficient
parallel algorithms for the three cases, 0øa,1, a=1, and
a.1. The average parallel running time for the 0øa,1
algorithm is logarithmic, the algorithm for the BA scale-free
network runs inOslog logNd time, and fora.1 the algo-
rithm runs in constant time.

Growing networks thus provide an example of a discon-
tinuous phase transition in complexity as a function ofa at
a=1. It is not surprising that a complexity transition occurs
at a=1 since this is where the structural properties of the
system also undergo a discontinuous transition from a high-
temperaturesa,1d regime where no nodes have a finite
fraction of the connections to a low-temperaturesa.1d re-
gime where there is a single gel node with almost all con-
nections. It is noteworthy that parallel time is the proper
resource to observe this transition. The more common com-
plexity measure of sequential time or computational work
has no transition since it requiresOsNd time to give an ex-
plicit description of the network for anya.

Our results set upper bounds on the depth of sampling
growing networks, but we cannot rule out the existence of
yet faster parallel algorithms. For example, if a constant time
algorithm exists for 0øa,1, it would modify the conclu-
sion that there is a discontinuous complexity transition ata
=1. There are few rigorous lower bounds in computational
complexity theory, so, in general, conclusions concerning the
depth of sampling and the existence of complexity transi-
tions in statistical physics must be considered tentative.

In this paper, we have presented a general strategy for
parallelizing a broad class of sequential stochastic processes,
exemplified by the coin toss with memory. We have applied
the general method to create algorithms that efficiently par-
allelize preferential attachment network models. The general
method should be more broadly applicable to growing net-
work models with more complicated rules. To give one ex-
ample, Hajra and Senf16g extend the preferential attachment

FIG. 1. The average parallel timeT to generate a network as a
function of system sizeN for a=0.25, 0.5, 0.75, and 1.0, from
bottom to top, respectively.

FIG. 2. The coefficientA of the leading logarithmic term in the
running time vsa. The points are the results of the simulation and
the solid line is the theoretical approximation, Eq.s34d.

B. MACHTA AND J. MACHTA PHYSICAL REVIEW E 71, 026704s2005d

026704-8

model to include an aging factorfFskd becomesFsk,t−ndg
so that older nodes are either favored or avoided depending
on a parameter. Our algorithm can be modified to efficiently
handle this class of models.

It is also instructive to examine a growing network model
where our general method is not efficient. Ifa,0, a case
examined by Onody and deCastrof17g, the general method
can be applied but will not be efficient. The problem is that
lower bounds on connection probabilities are typically ex-
tremely small and the algorithm will connect only a few
nodes in each parallel step. We are currently investigating
methods to efficiently parallelizea,0 networks.

The fact that preferential attachment growing networks
have no more than logarithmic depth indicates that they are
not particularly complex objects. On the other hand, very

complex biological and social systems generate networks
with similar properties. If growing network models accu-
rately describe the networks generated by these systems, one
must conclude that the complexity and history dependence of
the systems generating the networks are not manifest in the
networks themselves. An alternative possibility is that the
real networks are themselves complex but that growing net-
work models lack some essential statistical properties of the
real networks.

ACKNOWLEDGMENTS

This work was supported by NSF Grant No. DMR-
0242402. We thank Sidney Redner for useful discussions.

f1g M. Newman, Proc. Natl. Acad. Sci. U.S.A.98, 404 s2001d.
f2g R. Albert and A.-L. Barabasi, Science286, 509 s1999d.
f3g P. L. Krapivsky, S. Redner, and F. Leyvraz, Phys. Rev. Lett.

85, 4629s2000d.
f4g P. Krapivsky and S. Redner, Phys. Rev. E63, 066123s2001d.
f5g J. Machta and R. Greenlaw, J. Stat. Phys.77, 755 s1994d.
f6g J. Machta and X.-N. Li, Physica A300, 245 s2001d.
f7g C. Moore and J. Machta, J. Stat. Phys.99, 661 s2000d.
f8g J. Machta and R. Greenlaw, J. Stat. Phys.82, 1299s1996d.
f9g D. Tillberg and J. Machta, Phys. Rev. E69, 051403s2004d.

f10g R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L.
Troyansky, NaturesLondond 400, 133 s1999d.

f11g S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Phys.

Rev. Lett. 85, 4633s2000d.
f12g J. Machta, Am. J. Phys.67, 1074s1999d.
f13g C. H. Papadimitriou,Computational ComplexitysAddison-

Wesley, Reading, MA, 1994d.
f14g A. Gibbons and W. Rytter,Efficient Parallel AlgorithmssCam-

bridge University Press, Cambridge, 1988d.
f15g R. Greenlaw, H. J. Hoover, and W. L. Ruzzo,Limits to Paral-

lel Computation: P-completeness TheorysOxford University
Press, Oxford, 1995d.

f16g K. Hajra and P. Sen, e-print cond-mat/0406332.
f17g R. Onody and P. de Castro, e-print cond-mat/0402315.
f18g Preferential attachment models were considered much earlier

by H. A. Simon, Biometrika42, 425 s1955d.

PARALLEL DYNAMICS AND COMPUTATIONAL … PHYSICAL REVIEW E 71, 026704s2005d

026704-9

