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Parallel dynamics and computational complexity of network growth models
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The parallel computational complexity or depth of growing network models is investigated. The networks
considered are generated by preferential attachment rules where the probability of attaching a new node to an
existing node is given by a power of the connectivity of the existing node. Algorithms for generating
growing networks very quickly in parallel are described and studied. The sublinear and superlinear cases
require distinct algorithms. As a result, there is a discontinuous transition in the parallel complexity of sam-
pling these networks corresponding to the discontinuous structural transitiamr Bt where the networks
become scale-free. Far>1, networks can be generated in constant time while feraG<1, logarithmic
parallel time is required. The results show that these networks have little depth and embody very little history
dependence despite being defined by sequential growth rules.
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I. INTRODUCTION The BA growing network model would appear to have

This paper is concerned with the complexity of networks.Substantial depth since nodes are added to the network one at
Many features of biological, social, and technological sys-@ time and the preferential attachment rule uses knowledge
tems can be described in terms of networks. Examples inof the existing state of the network to decide where each new
clude gene networks, friendship networks, citation networksnode will attach. If the BA model captures the mechanism
the power grid, the Internet, and the world wide w@f.  for the scale-free behavior found in real world networks, then
Although the systems that generate these networks are eperhaps one can conclude that some of the complexity or
tremely complex, the networks themselves may or may nohistory dependence of the social, biological, or technological
evidence this complexity. In many cases, the networks gersystem that generated the network is embodied in the net-
erated by complex systems are approximately scale-freavork. One of the main conclusions of this paper is that grow-
Barabasi and Alberf2] (BA) showed that scale-free net- ing network models do not actually embody much history
works can be generated by rules for network growth thatlependence. What we show is that there is a fast parallel
embody the intuitively plausible idea of preferential attach-algorithm that generates BA growing networks wNmodes
ment[18]. In their model, the network grows by the addition in O(log logN) steps.
of one node at a time and each node creates one new con- The BA model has a linear preferential attachment rule.
nection to an existing node. Existing nodes in the network<rapivsky, Redner, and Leyvrd3] introduced a generaliza-
that already have many connections are more likely to gaiion of the BA model in which the probability to connect to
the new connection from the new node added to the networla node is proportional to a powerof its number of connec-
The growing network model seems to incorporate a historytions. The original BA model is the cage=1 while =0 is
dependent process, albeit simplified, into the generation o random network. The class of models @ <= is analyzed
the network. in Refs.[3,4] and it is seen that=1 marks a “phase transi-

One of the essential markers of complexity is a long histion” between a “high-temperature phase” fex<1 where
tory. Complex systems cannot arise instantaneously but rex node has an extensive number of connections and a “low-
guire a long sequence of interactions to develop. Neithetemperature phase” far> 1 where a single node has almost
“complexity” nor “long history” are well-defined concepts all connections in the largh! limit.
but an appropriate proxy for these ideas can be formulated We show that distinct but related parallel algorithms are
within computational complexity theory. Computational needed to efficiently simulate the<1 anda>1 regimes so
complexity theory is concerned with the resources requiredhat there is a discontinuous transition in the computational
to solve problems. Although there are various resources resomplexity of simulating the model at=1. For 0<a <1,
quired to solve computational problems, here we focus orthe parallel time for generating a network of siKescales
parallel time or depth. Depth is the number of computationalogarithmically inN while for 1<a < there is a constant
steps needed by a parallel computer to solve a problem. Itime algorithm. Exactly atv=1 still a third algorithm is most
our case, the problem is to generate a statistically correafficient with parallel running time that i©(log logN).
representation of the network. If the depth of the computa- Although the primary purpose for constructing the algo-
tion needed to generate the network is large, even using thithms presented here is to elucidate the complexity and his-
most efficient algorithm, we say that the network has a longory dependence of network models, the strategies embodied
history and cannot be generated quickly. If, on the othein the algorithms may have practical applications in compu-
hand, only a few parallel steps are needed to generate thational studies of stochastic processes. For example, the re-
network, then it cannot be complex. direction method that is used to show logarithmic complexity
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in the =1 case is closely related to the best known sequen- The linear homogeneous casék) =k, corresponds to the
tial method for simulating this modé#]. original Barabasi-Albert moddR] and leads to a scale-free

A number of nonequilibrium models in statistical physics network where the degree distributid?(k), has a power-law
defined by sequential rules have been shown to have fagiil, P(k) ~ k3. More generally, ifF(k) is asymptotically lin-
parallel dynamics. Examples include the Eden model, invaear, P(k) ~k*, where v is tunable to any value 2 v<o
sion percolation, the restricted solid-on-solid mofigll the  [34,11. The asymptotically linear attachment kernel is a
Bak-Sneppen modé6], and internal diffusion-limited ag- marginal case and marks a “phase transition” between re-
gregation[7], all of which can be simulated in parallel in gimes with qualitatively different behavior. Consider the ho-
polylogarithmic time. On the other hand, no polylog time mpgeneous model§(k)=k?, studied in detail in Ref4]. In
algorithm is known for generating diffusion-limited aggrega- the sublinear case,0a<1, the degree distribution has a
tion clusters and there is evidence that only power-lawstretched exponential form and the node with the maximum
speedups are possible using parallelfgh®]. degree has polylogarithmically many connections. The lim-

Phase transitions in computational complexity have beefing case ofa=0 is a random network where each connec-
the object of considerable recent study; for example, see Refion is randomly and independently chosen. There is an anal-
[10]. Most of the attention has been focused MR-hard gy petweenn and temperature in a thermodynamic system
combinatorial optimization problems. Growing networks andyith the range 6< a<1 like a high-temperature phase. The
many other physically motivated models are naturally relatec) qer parameter is the maximum degree in the system di-
to problems in the lower clad (problems solvable in poly- yided byN and the order parameter vanishes for <1.
nomial timg. One of the purposes of this paper is to provide|n the superlinear or low-temperature phase; 1, there is a
an example of a transition in computational complexity atsingle “gel” node that has almost all connections and the
this lower level of the complexity hierarchy. _ order parameter is unity. The phase transition then has a dis-

The paper is organized as follows. In the next section, Weontinuous character despite the fact that el state is
define and describe the class of preferential attachment nedzale-free. Another indication that the transition is discon-
work growth models to be studied. In Sec. Ill, we give atinuous is seen by looking at the entropy. Using the
brief review of relevant features of parallel CompUtaﬁO”a'Kolmogorov-Chaitin definition of entropy as the minimum
complexity theory. Section IV presents efficient parallel al-nymper of bits required to describe a system stag, it is
gorithms for sampling growing network models and relatedgjearly seen that the entropy per node is positive foraall
systems, Sec. V analyzes the efficiency of these algorithmsz 1 put that fora>1 the entropy per node vanishes since
and Sec. VI presents results from numerical studies of thgmost all nodes connect to the gel node and it is only nec-
efficiency of one of the algorithms. The paper ends with essary to specify the connections for those nodes that do not
discussion. connect to the gel node. Thus, the entropy per node is also

discontinuous atvr=1.
II. GROWING NETWORK MODELS

In this section, we describe growing network models with . PARALLEL COMPUTATION AND DEPTH
preferential attachment first considered by Barabasi and Al- ) ) ) )
bert [2] and later generalized by Krapivsky, Redner, and C'omputatlonal cpmplexny theory is concerned with the
Leyvraz[3,4]. Consider a graph witN ordered nodes, each scaling of _computaﬂonal resources needed to solve pr_oblems
having one outgoing link, constructed by the addition of one?S & function of the size of the problem. An introduction to
node every time step so that at tién the construction, the field can be found in Reff13]. Here we focus on parallel
nodet is attached to a previous node, O throughl. The computation and choose the standpadallel random access
probability 7r,(t) of attaching nodé to noden<t is given by ~ Machine(PRAM) as the model of computatiofl4]. The
main resources of interest aparallel time or depth and
F(kq(1)) number of processors. A PRAM consists of a number of
mo(t) = zZt) (1) simple processorérandom access machines, or RAM|
connected to a global memory. Although a RAM is typically
whereKki(t) is the degregnumber of connectionsof n, at  defined with much less computational power than a real mi-
timet, F is some function, and is the normalization given croprocessor such as Pentium, it would not change the scal-

by ing found here to think of a PRAM as being composed of
-1 many microprocessors all connected to the same random ac-
zt=" F(k(1)). 2) cess memory. The processors run synchronously and_ each
i processor runs the same program. Processors have an integer

) ] ) ) ) label so that different processors follow different computa-
We require thaF (k) is a nondecreasing function kf Notice  tjonal paths. The PRAM is the most powerful model of clas-
that, in generals,(t) is a function not only ok(t) but also  sjcal, digital computation. The number of processors and
of kj(t) for all j<t because of the normalizatiod, The  memory is allowed to increagelynomially(i.e., as an arbi-
attachment probabilities depend on all the node degrees utrary powej in the size of the problem to be solved. Com-
lessZ(t) is a function oft alone. This simpler form holds if munication is nonlocal in that it is assumed that any proces-
and only if F is a linear functionfF(k)=a+bk. In the latter  sor can communicate with any memory cell in a single time
case,Z(t)=(a+2b)t sinceE};ékj(t):Zt. step. Obviously, this assumption runs up against speed of
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light or hardware density limitations. Nonetheless, parallelber of heads on the firstcoin tosses modifies the probability
time on a PRAM quantifies a fundamental aspect of compuef a head on toss+ 1. Suppose that more heads on previous
tation. Any problem that can be solved by a PRAM with  tosses increases the probability of a head on the current toss
processors in parallel timE could also be solved by a single according to some functiof(x), where =(t) =f(x(t)) is the
processor machine in a tim& such thatW=HT since the probability of a head on théth coin toss andx(t) is the
single processor could sequentially run through the tasks thataction of heads on all the coins tossed befaor&uppose
were originally assigned to thé processors. The single pro- that f is a nondecreasing function of its argument and that
cessor timeWV is sometimes referred to as the computationalf(0) >0. Note that the special cadéx)=x is a Polya urn
work. On the other hand, it is not obvious whether the workproblem and is discussed in Sec. IV D.
of a single processor can be reorganized so that it can be The goal is to simulate a sequence Mfcoin tosses. It
accomplished in a substantially smaller number of steps byould appear that we cannot decide coimntil we have
many processors working independently during each step. decided all its predecessors. Nonetheless, we can proceed in
An example of where exponential speed-up can bearallel by successively improving lower bounds on the
achieved through parallelism is addihgnumbers. Addition  probability that a given coin toss is a head. Lgk(t),
can be done by a single processor in a time that scales lin-
early inN. On a PRAM withN/2 processors, addition can be pS(t) = fFOD), 3
carried out inO(log N) parallel time using a binary tree. For
simplicity, supposeN is a power of 2. In the first step, pro-
cessor one adds the first and second numbers and puts
result in memory, processor two adds the third and fourtrbe
numbers and puts the result in memory, and so on. After th%]c
first step is concluded, there aN/2 numbers to add and
these are again summed in a pairwise fashiorNBg pro-
cessors. The summation is completed affé¥fog N) steps.
Addition is said to haveefficientparallel algorithms in the

be an estimated lower bound on the probability thattthe
oin toss is a head on thgh step of the algorithm where
t) is the fraction of tosses determined to be heads at the
ginning of iteratiors. The starting assumption is that none
the tosses have been determinddt)=0 for allt, and this
assumption is used to compute how many coins become
heads on the first iteration. Thyss(t)=f(0) and, on the first
iteration, coint becomes a head with this probability. Once a
oin becomes a head, it stays a head while coins that are not

sense that they can be solved in time that is a power of th eads remain undecided. On the second iteration, we make
logarithm of the problem size, hefé that is, polylog time. use of the heads decided in the first iteration to recompute

On the other hand, it is believed that there are some pro fhe fraction determined to be head&(t), and from these

lems that can be solved in polynomial time using a single . iro 1 .
processor but cannot be efficiently parallelized. It is believeoObtaln the new bounds*(t) =f(x*(t) = p'(t). For each coirt

that P-complete problenfd4, 15 have this property and can- that is not yet determined to be a head, we declare it a head
not be solvl?ed inppolylorg;ﬁ timeawith polyngmizllyymany pro- with conditional probabilit_yp_z(t) that it will become a head
CeSsSOors. on this step given that it is not yet a heagdf(t)=[p?(t)

The main concern of this paper is the complexity of gen-—P"(D1/[1=p'()]. Some new coins are declared heads and
erating networks defined by preferential attachment growtihese are then used to compuitgt). In general, if coint is
rules. Since these networks grow via a stochastic process, Wt yet determined by ste§ it becomes a head with prob-
envision a PRAM model equipped with registers containingability
random numbers. The essential question that we seek to an- S(t) - pSi(t)
swer is the deptlinumber of PRAM stepsrequired to con- pS(t) = %
vert a set of independent random bits into a statistically cor- 1-p7(t)
rect network.

(4)

wherepS(t) is the conditional probability of coih becoming
a head on ste® given it was undecided up to st&p The
IV. PARALLEL ALGORITHMS FOR GROWING expression for the conditional probability follows from the
NETWORK MODELS observation that the denominator is the marginal probability
At first glance, it seems that growing networks have aof being_ undecided after step-1 and the numerator .is the
strong history dependence. It would appear that to connedobability of becoming a head on st&p The algorithm
some nodd appropriately one must first connect all nodesStops on ste when there is no change from one step to the
prior tot in order to compute the connection probabilities for N€Xt, X' ()=x""*(t) for all t, and the lower bounds equal the
t according to Eq(1). Surprisingly, one can construct a sta- true probabilitiesp'(t)=#(t). At the end of the simulation,
tistically correct network using an iterative parallel processevery coin thatis not a head is declared to be a tail. For every
that converges in far fewer thansteps. The strategy is to t,
place progressively tighter lower bounds on the connection

1 2 e = xT() =
probabilities based on connections made in previous parallel X0 <x(t) < <x(t)=x(®, 5)
steps in the process. so that

A. A coin toss with memory pit) < pP(t) < - < p'(t) = m(t). (6)

A simple example of the general strategy is instructive.Thus the procedure is well-defined and we can decide in
Consider a biased coin toss with memory such that the nunstages whether coihwill be a head.
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In the following two sections, we show how to generalize Sty — ZS
. . . t) = ck(t)/Z(1), 11
this strategy to the case of preferential attachment growing QW k;( 1z (1)
network models. with the normalization given by
t-1
B. Parallel algorithm for linear and sublinear kernels ZS('[) = ckj(t) + 2 F(kﬁl(t)), (12
m=0

This section describes a parallel algorithm for construct-
ing a network with a sublinear or linear attachment, rule, On stepS of the algorithm, the conditional probability
F(k)=k?, where 0< a=<1 or, more generally, the case where pﬁ(t) of connecting node to noden, given that nodd has
the attachment weigh&(k) is a nondecreasing, convex func- not yet connected to a real node on an earlier step, is given
tion of k. As in the coin toss example, on intermediate par-by the difference between the probability bounds on succes-
allel steps we have nodes whose connections are not ysive steps divided by the marginal probability of being un-
determined. In this algorithm, we lump all of these connec-determinedconnected to the ghost nodeefore stefs,
tions into a “ghost” node whose in-degree is equal to the S s1
number of nodes that have not yet been determined. On ev- pS(t) = Pr®) — Py (0 (13)
ery parallel time stepS, the algorithm attempts to connect : Q¥ (t)
every node that is currently connected to the ghost node 10 Rote that the denominator can be written as
real node according to lower bounds on the connection prob-
abilities determined by connections that have been made in 1
previous steps. QS =1-2 py ). (14)

In the initialization, S=0 step of the algorithm, a ghost m=0
node is created and all real nodes are connected to it, excegly stepS of the algorithm, each nodethat was still con-
node zero, which connects to itself, and node one, which alsgected to the ghost node after st6p1 is connected with

connects to node zero. Thus, 80 and every sequential propability pS(t) to real noden<t or, with probability p3(t),
time t>1, every real noden<t has in-degree 0 and out-

degree 1, except the zero node, which has both in- and out- pgs(t) = Q¥(1)/Q (1) (15)
degree equal to 1. The ghost node has in-detyteke for t
>0. Letkg(t) be the number of nodes connecting to the ghos
node at the beginning of parallel st&and sequential time

o) thatk;(t):t—l for t>0. In the first,S=1 step of the
algorithm, the connection probability lower bound for nade
to connect to node, pi(t), is given by

ts.tiII connected to the ghost node. The algorithm is finished
after T steps when there are no more nodes connected to the
ghost node and the bounds of E#j0) saturate to the correct
probabilities of Eq.(1). Note that at least one node must
connect in each parallel step since the lowest numbered node
that is still unconnected will have no weight allotted to it in
the ghost node.

L) = F(2/z4), n=0, o For the conditional probabilitiep3(t) to be positive, the
P F(l)/zl(t) n>o0, probability bounds must be nondecreasing formaéindt,
l 2 DY T =
while the connection probabilit@'(t), for the ghost node is Pat) < pp(t) < -+ < pp(t) = my(1). (16)
taken to be proportional to its number of connections, These inequalities imply a bound aras follows. Sincd=(k)
5 is a nondecreasing function kfand k,?(t) is a hondecreasing
QY(t) =c(t-1)/Z\(1) (8  function of S, it is sufficient to require thaZ(t) be a nonin-
with the normalization given by creasing functionZ(t) < Z5(t), or, since
t-1
ZXt) =c(t— 1) + F(2) + (t - D)F(1). 9) k() =2t -1 -2 ky(t), (17)
m=0

The constant is discussed below. These are the connection

probabilities that would arise if each real node has one con?’

nection and the ghost node has an attachment probability 1 -1

proportional to its degree. On the first step of the algorithm, >, [F(k3(t)) - ck ()] < >, [F(KZ (1) — ek X(t)].

each node is connected to one of its predecessors or the  m=0 m=0

ghost node according to the probabilities given above. (18)
As in the case of the coin toss model described in the = o o )

previous section, on successive steps we recompute thgis inequality is satisfied term by term Fi(k) —ck is non-

bounds on the connection probabilitigg(t) for the real Increasing, which holds if

nodes and the ghost no@&(t). For generas, t, andn, these c=maxF(k+1) - F(k)}. (19)

probabilities are given by k

e require that

s S S Since the algorithm will finish fastest if the ghost node has
pa(t) = F(k(1)/Z3(1), (100 the smallest possible weight, we setequal to its lower
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bound. In particular, for the power-law cage(k)=k* with < pa(t) — pS k(1)
a=<1, the maximum occurs fdt=1 yielding pr(t) = SO (23
*]

c=2-1. (20) The numerator is the probability thetonnects ta on step
S and the denominator is the probability thais undeter-
mined after stef5—1. The conditional probability that is
C. The parallel algorithm for superlinear kernels undetermined after stef, given that it was undetermined

) . after stepS-1, is
For the superlinear case, a gel node develops to which

almost all nodes connect &— . When a>2, all but a S(t) = pg(t) (24
finite number of nodes connect to the gel node. The parallel Py pSt)

algorithm described here takes advantage of the fact that the . o g _

vast majority of connections are to the gel node and the gel he algorithm is finished after step if no changes occur
node plays a role similar to that of the ghost node in theffom stepT—1 to stepT. On stepT, nodes that are connected
sublinear and linear cases. The basic structure of the algd® g are considered to be determined and actually connected
rithm is as follows. In the initializatior§=0 phase, the se- (0 the gel node. o

quential algorithm is run so that all nodest, are properly The algorithm is valid if Eq(16) holds for allt>t, and
connectedt, is chosen so that a single gel node is firmly N# g SinceF(k) is nondecreasing, we require tHE() is a
established by the time all nodest, are connected. The gel nonincreasing function o8. From Eq.(22) we must show
node is firmly established if the probability that a different that the change ifZ from one parallel step to the next is
node ultimately becomes the gel node is less than some smaither constant or decreasing for aindS. We can write the
valuee. Whena is large,t, is small, but asy approaches 1, requirement for the validity of the algorithm as

for fixed e, ty diverges. After the initialization phase, it is t-1
tentatively assumed that all nodgs<t<<N are connected to 75-751= Y [F(K) - F(k>H] < 0. (25)
the gel node. The gel node serves as a repository for all m=0

connections that are not yet determined. In successive ste
the connection probabilities of all nodgs<t<N are modi-
fied according to the number of connections that possibl

H?’is useful to take the gel node term out of the sum, as its
é)ehavior is different,

destination nodesn<t, received in the previous step and 1

lower bounds on connection probabilities are recalculated. Z5-Z5=F(k) -F(kg H+ > [F(ky) - F(k3H].
The difference between old and new probability bounds is m=0m=g

used to find conditional probabilities for moving a connec- (26)

tion from the gel node to some other node. This process is

repeated until no connections are moved from the gel node tot €ach parallel step, connections are switched from the gel
any other node. The nodes that have not been moved aw;ﬂpde to other nodes. For every connection that is lost by the

from the gel node are then determined to be connected to tH! Node, exactly one connection is gained by another node.
gel node. We also note that becauseis a concave function with a

Following the general strategy, lower bounds on the confontinuously increasing derivative, we can say that for any

nection probabilities fot>t, are determined for each paral- POSitive &,
lel step, F'(k+ 8k)ok= F(k+ k) - F(k) = F'(k k.  (27)
o FOSD) Sinceks is decreasing wit!6 and (S increasing withs,
Pt = —5 (21)  we can rewrite Eq(26), absorbing the contribution of the gel
Z1) node into the sum to describe the entire rewiring kf
S —kﬁl connections from the gel node to another node. We use
where the normalization is given by Eq. (27) to put an upper bound on the change in size, the
- right-hand sidgRHS) of Eq. (26),
75 = >, F(k(1)). 22 o
=2 Flat) 22 757512 3 G-I -F Q). (29
m=0,m#g

Note that the connection probabilities are calculated in therhe term on the RHS in the first square brackets is non-
same way for the gel node and the other nodes in contrast fgegative. If k§> kﬁv then the term in the second square
the sublinear case. brackets is always negative beca@sds a strictly increasing

In the first parallel stepS=1, the algorithm connects ev- function of k. This argument shows that E(25) holds and
ery nodet>ty, to some node according to the connection thus the algorithm is valid if the gel node remains the largest
probabilitiespy(t). In successive step§>0, it attempts t0  node until the end of the simulation. The valuesafnd, thus,
reconnect only those nodes-t, that are still connected to the choice oft, determines the error rate of the algorithm
the gel node. The conditional probabiligj(t) for connecting  since the algorithm fails if and only if the gel node loses its
t>1ty to n# g on stepSis given by status as having the most connections.
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D. Redirection method for linear kernels and urns can have any limit law. For largh, the fraction of red balls
approaches a constant but, with equal probability, that con-

This section explores the method proposed by Krapivskystant can be any value from zero to one. The limit law is thus
and Rednef4] for the case of a linear attachment kernel. Wegetermined by the initial choices.

show that this method can be used to generate the network in The urn model can be viewed as a network where each

O(log logN) steps. The method works as follows: At se- ha| is a node and the connection from one node to a prede-
quential timet, nodet is connected to any node<t with  cessor represents the fact that the color of the later node was
equal probability. With probability, however, this node is determined by the earlier node. To find the color of a given
redirected to the “ancestor” of, the node thah connects to.  pall or node, the connections are traced back to one of the
As Krapivsky and Redner show, wher 0.5, this procedure two initial balls. This representation shows that the urn
exactly reproduces the BA modét (k) =k]. For other values model is identical to the linear network model in the limit
of r, F(k) is asymptotically linear and the connectivity dis- that the redirection probability is unity. The typical longest
tribution scales a®,~ k™, wherev=1+1/r. Itis easy to see path of connections back to the origin@Xlog N) since each
why redirection is equivalent to a linear kernel. A node thatconnection will typically halve the distance to the origin.
already hak connections hak ways to be connected from a Thus the depth of sampling the history of an urn model is
new node since each of tHe connections can serve as a O(log logN).
redirection point for the new node. For(1-r)=1/2, it is
clear that~(k) =kF(1), so this case corresponds to the homo-
geneous BA network.

This redirection process can be simulateditiog log N) A. Efficiency of the parallel algorithm when 0<a<1

parallel time as follows. First, randomly connect every node |, this section we argue that for a system of digavhen
to one of its predecessors. Once this is done, for every corny< , <1, the parallel algorithm will finish iO(log N) par-

nection, with pro_babilityr, mgke that C(_)nnection a redirect- g steps and we estimate the prefactor of the logarithm.
able (R) connection, otherwise make it a termin@) con- g giarting point is an equation for the expected number of

nection._ Al tha.t remains is .to trace every pqth of R connections to the ghost node on tBel step given the
connections until a T connection is reached. This can b‘ﬁumber of connections on stefsand S—1

accomplished using a standard parallel connectivity algo-

rithm or by the following simple approach. For every ndde 1

if its outgoing connection is type T, make no change to the E(kS(1) = 2 [K3(t") - k(t' = D]pg(t). (29
connection. If its outgoing connection is type R, then it is t'=1

redirected. Supposeconnects ta by an R connection and
thati connects tg, then after the parallel stepconnects to

j. Furthermore, if the to j connection is type T, then the new fined in Eq.(15), is the conditional probability that' is

connection front to j is type T, otherwise itis an R CONNEC- - Hnnected to the ghost node after s&ip it is connected to

tion. When all of the connections are type T, the program i :
done and the network is correctly wired. It is clear that thissmﬁi§|E,c,)sﬁlR?gf-bff%rsesctig?zﬁ?;?g?ﬂgigglfhsamiﬁach-
procedure requires a number of steps that scale as the loga- tk 9 i | ith and i i
rithm of the longest chain of redirections. On average, then €Nt KEMNELIS a pure power faw with exponenand ignor
longest chain of redirections will behave as the logarithm of"9 constants that are irrelevant in the latgémit, we have
the system size. Each connection redirects with probability E(kS(t)) =cl(c+1)=1-2°. (30)
The average length of the longest chain of redirectithsis . -
estimated byNrM=1, whereN is the number of possible This result follows from the fact that the probability that
starting points and™ is the probability of a chain of length Nnodet will still be connected to the ghost node after the first
M. Thus logN+M logr~0 soM~-logN/logr. Note that  Step is, according to Eq¢8) and (9), approximatelyc/(c
the chain length saturates@tlog N) rather than diverges as *+1). The far RHS of the expression is obtained from Eq.
r—1. Even ifr — 1, each connection will typically halve the (20).
distance to the origin so that there &¢log N) connections To proceed further, we make two approximations. First,
in the longest chain. A chain of connections of lenytrcan ~ We ignore fluctuations and replakgby its average value on
be traced in logVl steps, because each step will halve thethe RHS of Eq(29),
length of the chain. Thus the algorithm will finish in -1 S SS1er
O(log M)=0O(log logN) steps. S = S [SY) - kSt - 1] kg(t') Z7(t ), (31)
The Polya urn model is closely related to the BA growing ot kS () Z5(t)
network model and the redirection method can be applied to o _ )
efficiently sample its histories in parallel. In the simplestWhere the notation is simplified in this equation by interpret-
version of the model, an urn initially contains two balls, oneing Kq as the average number of connections to the ghost
red and one black. On each time step a ball is randomiyode and where Egél1) and(15) have been used to expand
selected from the urn and then replaced along with a newg:
ball of the same color. Thus, aftét steps the urn contains ~ For the case of a linear attachment kerreet1, and the
N+2 balls. The urn model has the unusual property that ihormalizationZ® is independent oB. The ratio of normal-

V. EFFICIENCY OF PARALLEL ALGORITHMS

The quantity in the square brackets is 1'ifis connected to
the ghost node on steépand O otherwise, whil@g(t’), de-
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izations thus drops out of the equation, and we obtain For 1< a< 2, additional steps are needed befd@(N) is
-1 S less than 1 and the algorithm is done. We make the ansatz
Stlggy _ Siery _ LS4 _ ﬁ(t,) that
K= 2 ) -kt - D& (32)
t'=1 kg () 5k§(t) ~ "9 (39)

For sublinear kernels, the choice ofinsures that the ratio  anq |ook for a self-consistent solution fgtS). The running
ZSY(t')/ZX(t') is less than 1 as discussed at the end of Seaime T is obtained by solving for the lea3tsuch thaty(T)
IV B. Our second approximation is to assume that this ratio<Q.
is unity for the entire sublinear regime. Note that bifft) On the second and later steps of the algorithm, the condi-
and kg(t) are proportional td. It follows from Eq.(32) that  tional connection probabilities, defined in Eq21)—(23),
kS(t) is proportional tot for all S and we writekj(t)=«(S)t. ~ can be written to leading order and for: g as
This substitution reduces E32) to
w20 0 20z -
S = S-1va '
;‘S(_)l). (33) kg (1)
K There are two ways fopﬁ(t) to be nonzero. The first is for
Given our approximations, the ratie(S)/«(S-1)=1-2"“  there to have been a new connection fronto n, with n
for all Sand the solution i%(S)=(1-2"%)S The estimate for <t’<t, in stepS-1. The expected number of nodes that
the number of stepd], needed to complete the algorithm is received new connections in st&s-1 is just 5k§(t). Since
such that the ghost node is expected to have fewer than orng(t)~t for all S, the leading behavior gi3(t) is t™ and the

(39

k(S+1)=

node, x(T)N=1. This requirements leads to the result overall probability that will connect away from the gel node
by this mechanism scales ak(t)t™*~t"9,
log(N) S ; ;
= (34) The second way fop,(t) to be nonzero is for the ratio
—log(1-27%) Z5Y(t)/ZX(t) to exceed unity. This possibility applies for all
This result is compared to the numerical simulations in Sectarget nodesn<t, n#g. The leading behavior of this ratio
VL. is given by
S S a S
ici | t) + Skt t
B. Efficiency of the parallel algorithm when a>1 Zgl(t)/ZS(t) _ [kg( ) - 51};( )] 1+ aéksq( ) (40)
In this section, we show that the>1 algorithm finishes Ks(®) Kg(®)

in constant time independent bf although this constant di- ¢4 that the leading behavior @;ﬁ(t) is ﬂ(g(t)t—(lwz). Since
verges as— 1. The key facf4] about superlinear networks yhere aret target nodes, the total probability thawill con-
is that there is a cutoff nect away from the gel node by this mechanism again scales
I(max: al(a-1) (35) aStY(S)_a'. . .
o Combining both of the above mechanismstftw connect
such that only a finite number of nodes have more kR  away from the gel node and summing over falt,<t<N
connections. By choosing, sufficiently large, no nodes  (and still connected to the gel nodeve obtain an expression

> to will have more tharky,, connections. We will show that for skS*(N), the expected number of nodes directed away
the running time of the parallel part of the algorithm is fom the gel node on ste§,

roughly K., Steps.

Consider what happens on the first step of the algorithm. SkGH(N) ~ NS+ (41)
All nodest>t; are initially connected to the gel node so theU ing the ansatz of Eq38), we obtain the recursion rela-
leading behavior of the normalization B(t)~t* and the i sing satz q38), w
leading behavior of the connection probabilities, defined in'o™
Eq.(21), is WS+ =y +1-a. (42)

pﬁ(t) ~t (36) The recursion relation and the initial conditiofi2)=2-q,

for n#g. Summing over alh# g, we find that on the first Eq. (37), has the solution

step, the probability that nodewill connect away from the S =a-(a-1)S. (43)
gel node behaves &5®. The expected change in the number o ) ) ]
of nodes Connecting to the ge] node during Step one is ObThe running time of the algorlthm is obtained from the least

tained by summing over all nodég<t<N, with the result | for which (T) is negative,

SKE(N) = kg(N) = K3(N) ~ N#™, (37) T=al(a-1), (44)
If «>2, no changes are expected to occur in the first step d?f. from, Eq.(35),
the algorithm and we are done. This result is consistent with T=k (45)
max-

the fact that fore> 2, there are only a finite number of nodes
with more than one connection and these are all determinefihis result can be understood in terms of the following se-
beforet,,. guence of events for creating connections for nodes beyond
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FIG. 1. The average parallel timnfeto generate a network as a
function of system sizeN for «=0.25, 0.5, 0.75, and 1.0, from FIG. 2. The coefficienf of the leading logarithmic term in the
bottom to top, respectively. running time vsa. The points are the results of the simulation and

the solid line is the theoretical approximation, E&4).

to- In the first parallel step, almost all nodes with two con-
nections are generated. In the second parallel step, a smgtowth rules. We demonstrated that these networks can be
fraction of these nodes develop a third connection and &ampled in parallel time that is much less than the size of the
comparable number of nodes with one connection get a se@etwork. This result is surprising because the defining rules
ond connection. On the third step, an even smaller number gbr generating these networks are sequential with nodes
nodes with three connections get a fourth connection and sadded to the network one at a time depending on the present
on until nothing happens. Note that the analysis of the algostate of the network. Nonetheless, we have bounded the
rithm reproduces the results [id] for the scaling of the num-  depth of sampling growing networks by exhibiting efficient
ber of nodes with 2, 3,.., kyax CONnections. parallel algorithms for the three casess@<1, =1, and
a>1. The average parallel running time for thesa<1
algorithm is logarithmic, the algorithm for the BA scale-free
network runs inO(log logN) time, and fora>1 the algo-

In Sec. V A, we argued that the algorithm for the sublin-rithm runs in constant time.
ear kernel requires logarithmic parallel time to generate a Growing networks thus provide an example of a discon-
network, and in Eq(34) we estimate the coefficient of the tinuous phase transition in complexity as a functionaoét
logarithm. In this section, we support these conclusions withw=1. It is not surprising that a complexity transition occurs
a simulation of the parallel algorithm on a single processomt =1 since this is where the structural properties of the
workstation. In the simulation, the work of each processor orsystem also undergo a discontinuous transition from a high-
the PRAM is done in sequence making sure not to update themperature(a<1) regime where no nodes have a finite
database describing the network until a parallel step is comfraction of the connections to a low-temperatee>1) re-
pleted. We generated 1000 networks for each value afid  gime where there is a single gel node with almost all con-
for each system size. Values of ranged from 0 to 1, in  nections. It is noteworthy that parallel time is the proper
increments of 0.05 and system sizes from 50 nodes to 12 84@source to observe this transition. The more common com-
nodes with each size separated by a factor of 2. Figure plexity measure of sequential time or computational work
shows the average number of parallel steps versus systeRas no transition since it requiré3(N) time to give an ex-
size for@=0.25, 0.5, 0.75, and 1.0. The figure demonstratei,ncit description of the network for an.
the logarithmic dependence of average running timen Our results set upper bounds on the depth of sampling
system sizeN for all values ofa and the full range of system  growing networks, but we cannot rule out the existence of
sizes so that that, to a good approximatidmA(a)logN.  yet faster parallel algorithms. For example, if a constant time
Figure 2 shows a plot of the coefficieatas a function okx.  algorithm exists for 8 a <1, it would modify the conclu-
The results are plotted for9a<1. The prediction of Eq. sjon that there is a discontinuous complexity transitiom at
(34) is shown in the same figure. Although not perfect, the=1. There are few rigorous lower bounds in computational
approximation of Eq(34) captures the general trend of the complexity theory, so, in general, conclusions concerning the
data and is within a few percent of the numerical results fOI'depth of Samp"ng and the existence of Comp|exity transi-
«<0.8. The larger fluctuations in connectivity near1  tjons in statistical physics must be considered tentative.
may explain why the “mean-field” assumption underlying |n this paper, we have presented a general strategy for
the theoretical curve loses accuracy there. The theoreticglarallelizing a broad class of sequential stochastic processes,
estimate does appear to correctly predict tidt) ap-  exemplified by the coin toss with memory. We have applied
proaches zero with infinite slope as— 0. the general method to create algorithms that efficiently par-
allelize preferential attachment network models. The general

VIl DISCUSSION method should be more broadly applicable to growing net-

We have examined the parallel computational complexitywork models with more complicated rules. To give one ex-

of generating networks obeying preferential attachmenample, Hajra and S€i6] extend the preferential attachment

VI. SIMULATION RESULTS FOR LINEAR AND
SUBLINEAR KERNELS
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model to include an aging fact¢F(k) becomesF(k,t—-n)]  complex biological and social systems generate networks
so that older nodes are either favored or avoided dependingith similar properties. If growing network models accu-
on a parameter. Our algorithm can be modified to efficientlyrately describe the networks generated by these systems, one
handle this class of models. must conclude that the complexity and history dependence of
Itis also instructive to examine a growing network modelthe systems generating the networks are not manifest in the
where our general method is not efficient.df<0, a case networks themselves. An alternative possibility is that the
examined by Onody and deCasfrb7], the general method rea| networks are themselves complex but that growing net-

can be applied but will not be efficient. The problem is thatyyork models lack some essential statistical properties of the
lower bounds on connection probabilities are typically €X-rag| networks.

tremely small and the algorithm will connect only a few
nodes in each parallel step. We are currently investigating
methods to efficiently parglleliza<0 networks.' ACKNOWLEDGMENTS
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